When the AWGN has PSD $=\frac{N_{0}}{2}$, we know that the noise in vector form will have $\sigma^{2}=\frac{N_{0}}{2}$ in each dimension.

To solve part (a) and (b), we first sketch the decision regions. Here, the boundaries of the regions can be easily found because the detector use minimum-distance detection.
(Earlier, we saw that this detector is optimal (same as the MAP detector) when
(1) the vector channel model is additive Gaussian noise and
(2) the messages ave equally likely.)

The boundaries are simply the perpendicular bisectors of the lines connecting two (vertically or horizontally) adjacent signal points.

(a) $Q_{1,2}=P[\hat{\omega}=2 \mid W=1]$

To be detected $a, \vec{s}^{(2)}$, the received vector must be in D_{2} The first component of \vec{N} (Noise in the $n^{2 t}$ dimension)
the decision region for $\vec{r}^{(2)}$.

$$
Q_{12}=p\left[-\infty<N_{1} \leqslant \frac{d}{2}\right] p\left[\frac{d}{2} \leqslant N_{2}<\infty\right]
$$

$$
\text { [The second component of } \vec{N}
$$

$$
\text { (Noise in the } 2^{\text {nd }} \text { dimension) }
$$

$$
\begin{aligned}
& \quad \text { (Noive in me } 2^{\text {nd }} \text { dimension) } \\
& =\left(Q\left(\frac{-\infty}{\sigma}\right)-Q\left(\frac{d}{2 \sigma}\right)\right)\left(Q\left(\frac{d}{2 \sigma}\right)-Q\left(\frac{\infty}{\sigma}\right)\right)=\left(1-Q\left(\frac{d}{2 \sigma}\right)\right)\left(Q\left(\frac{d}{2 \sigma}\right)\right) \\
& \text { Here, } \sigma^{2}=\frac{N_{0}}{2} \text {. So } \sigma=\sqrt{\frac{N_{0}}{2}} \text { and } \frac{d}{2 \sigma}=\frac{d}{2 \times \sqrt{\frac{N_{0}}{2}}}=\frac{1}{2 \sqrt{3}} . \\
& \text { There fore, } Q_{12}=\left(1-Q\left(\frac{1}{2 \sqrt{3}}\right)\right)\left(Q\left(\frac{1}{2 \sqrt{3}}\right)\right) \approx 0.2371
\end{aligned}
$$

(b)

$$
\begin{aligned}
Q_{3,5} & =P[\hat{\omega}=5 \mid \omega=3] \\
& =P\left[\frac{d}{2} \leqslant N_{1} \leqslant \frac{3 d}{2}\right] P\left[+\frac{d}{2} \leqslant N_{2}<\infty\right] \\
& =\left(Q\left(\frac{d}{2 \sigma}\right)-Q\left(\frac{3 d}{2 \sigma}\right)\right)\left(Q\left(+\frac{d}{2 \sigma}\right)-Q\left(\frac{\sigma 0}{\sigma}\right)\right) \\
& =\left(Q\left(\frac{d}{2 \sigma}\right)-Q\left(\frac{3 d}{2 \sigma}\right)\right)\left(1 / / Q\left(\frac{d}{2 \sigma}\right)\right) \\
& =\left(Q\left(\frac{1}{2 \sqrt{3}}\right)-Q\left(\frac{\sqrt{3}}{2}\right)\right)\left(1 / 1 Q\left(\frac{1}{2 \sqrt{3}}\right)\right) \\
& \approx \sin 1(3): 0.0746
\end{aligned}
$$

(c)

$$
\begin{aligned}
& =\sqrt{\frac{10 d^{2}}{4}}=d \sqrt{\frac{5}{2}} \\
& E_{s}=\frac{1}{8} \times\left(4 \times\left(\frac{d}{\sqrt{2}}\right)^{2}+4 \times\left(d \sqrt{\frac{5}{2}}\right)^{2}\right)=\frac{1}{2}\left(\frac{d^{2}}{2}+\frac{5 d^{2}}{2}\right)=\frac{1}{2} \times 3 d^{2}=\frac{3}{2} d^{2} \\
& E_{b}=\frac{E_{s}}{\log _{2} M}=\frac{\frac{3}{2} d^{2}}{\log _{2} 8}=\frac{\frac{3}{2} d^{2}}{3}=\frac{1}{2} d^{2}=\prod_{d=1}^{\frac{1}{2}} \\
& \frac{E_{b}}{N_{0}}=\frac{1 / 2}{2 \times 3}=\frac{1}{12} .
\end{aligned}
$$

(a) (i) Step (1)

Same arrangement of point

$$
Q=\left[\begin{array}{lll}
0.3 & 0.3 \\
0.3 & \downarrow & 0.3 \\
0.3 & 0.3 &
\end{array}\right]
$$ vs. decision region.

Step (2)

$$
Q=\left[\begin{array}{ll}
1-0.3-0 & \left.\begin{array}{cc}
1-0 & 0.3 \\
0.3 & 0.3 \\
0.3 & 0.3
\end{array}\right]
\end{array}\right]
$$

Conclusion: $O=\left[\begin{array}{lll}0.4 & 0.3 & 0.3 \\ 0.3 & 0.4 & 0.3 \\ 0.3 & 0.3 & 0.4\end{array}\right]$
(ii)

$$
Q=\left[\begin{array}{llll}
0.41 & 0.29 & 0.29 & 0.01 \\
0.29 & 041 & 0.29 & 0.01 \\
0.29 & 0.29 & 0.41 & 0.01 \\
0.33 & 0.33 & 0.33 & 0.01
\end{array}\right]
$$

(b)

$$
\begin{array}{r}
P(\varepsilon)=P[\hat{\omega} \neq \omega]=1-P[\hat{\omega}=w]=1-\sum_{i} P[\hat{\omega}=w \mid w=i] P[w=i] \\
=1-\sum_{i} P[\hat{\omega}=i \mid w=i] \frac{1}{M}=1-\sum_{i} Q_{i, i} \frac{1}{M}=1-\frac{1}{M} \operatorname{tr}(Q) . \\
\quad \operatorname{tr}(A)=\text { the sum of likely messages }
\end{array}
$$ the elements on the main diagonal of A.

(i) $p(\varepsilon)=1-\frac{1}{3}(0.4+04+0.4)=0.6$
(ii) $P(\varepsilon)=1-\frac{1}{4}(3 \times 0.41+0.01)=0.69$
(a) BPsk waveform channel gives binary symmetric channel with crossover probability

$$
\begin{aligned}
& p=Q\left(\frac{d}{2 \sigma}\right)=Q\left(\sqrt{\frac{4 E_{b}}{2 N_{0}}}\right)=Q\left(\sqrt{2 \frac{E_{b}}{N_{0}}}\right) \\
& E_{s}=\left(\frac{d}{2}\right)^{2}=\frac{d^{2}}{4} \quad \sigma^{2}=\frac{N_{0}}{2} \\
& E_{b}=\frac{E_{s}}{\log _{2} M}=\frac{d^{2} / 4}{\log _{2} 2}=\frac{d^{2}}{4} \quad \sigma=\sqrt{\frac{N_{0}}{2}} \\
& d=\sqrt{4 E_{b}}
\end{aligned}
$$

The capacity of $B S C$ is given by $1-H(p)=$

$$
=1+\left(p \log _{2} p+(1-p) \log _{2}(1-p)\right) \text { where } p=Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)
$$

(b) In class, we have shown that the Q matrix of standard rectangular quaternary Q AM is given by

$$
Q=\left[\begin{array}{cccc}
(1-q)^{2} & q(1-q) & q(1-q) & q^{2} \\
q(1-q) & (1-q)^{2} & q^{2} & q(1-q) \\
q(1-q) & q^{2} & (1-q)^{2} & q(1-q) \\
q^{2} & q(1-q) & q(1-q) & (1-q)^{2}
\end{array}\right] \quad \text { where } \quad \vec{s}^{(1)}=Q\left(\frac{d}{2 \sigma}\right)
$$

This is a symmetric channel and the corresponding capacity is

$$
C=\log _{2}\left|s_{Y}\right|-H(\vec{r})=\log _{2} 4-H\left(\left[(1-q)^{2} q(1-q) q(1-q) q^{2}\right]\right)
$$

To get the constellation for $Q p s k$, we simply rotate the constellation above by 45°.

So, the capacity is the same as what we found above.
Note also that $E_{s}=\left(\frac{d}{\sqrt{2}}\right)^{2}=\frac{d^{2}}{2}$ and $E_{b}=\frac{E_{s}}{\log _{2} M}=\frac{E_{3}}{\log _{2} 4}=\frac{d^{2} / 2}{2}=\frac{d^{2}}{4}$

$$
\begin{aligned}
d & =\sqrt{4 E_{b}} \\
\frac{d}{2 \sigma} & =\sqrt{\frac{4 E_{b}}{2 N_{0}}}=\sqrt{2 \frac{E_{b}}{N_{0}}}
\end{aligned}
$$

Therefore,

$$
C=2+(1-q)^{2} \log _{2}(1-q)^{2}+2 q(1-q) \log _{2} q(1-q)+q^{2} \log _{2} q^{2}
$$

where $q_{0}=Q\left(\sqrt{2 \frac{E L}{N_{0}}}\right)$

$$
G=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right):}_{P^{L}}:\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(a) Any codeword is of the form $x=b G$.

Here, 6 has $k=2$ rows; so, the length of b must also be $k=2$. Therefore, there are $2^{k}=2^{2}=4$ codewords.

b	$x=b G$
00	000000
01	011101
10	100010
11	111111

(b) $H=\left[I:-P^{T}\right]=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right]$ does not matter in GF(2)
(c)

$$
G H^{T}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
0
\end{array}\right]
$$

(d) $d_{\text {min }}=2 \leftarrow$ There are $\binom{4}{2}=6$ pairs of codewords.

The minimum Hamming distance among there pairs is 2 .

(a) Matrix H should be $(n-k) \times n$.

So, $n=7$,

$$
\begin{aligned}
& n-k=3 \\
& k=n-3=7-3=4
\end{aligned}
$$

(b)

$$
\sigma=\underset{\text { the negative sign }}{\left[-p^{T} \mid I\right]}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

does not matter in GF(2)
(c)
(i) From (a), we know that $k=4$. Therefore, the information bits should be divided into blocks of 4 bits. 12 bits are given. So, there should be $\frac{12}{4}=3$ blocks.
(ii)

\underline{b}	$\underline{x}=\underline{b} G$
0011	0
1	0
1	1

(d)
(i) From (a), we know that $n=7$. Therefore, the received bits should be divided into blocks of 7 bits 21 bits are given. So, there should be $\frac{21}{7}=3$ blocks.
(ii)

Error position Corrected x 1011010
1001001
$010 \underbrace{0101}_{\hat{\hat{b}}}$

